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Rajecv P. Shrivastava | APPLICATION OF /-FUNCTION OF
TWO VARIABLES IN PROBLEM OF
VIBRATION IN A STRING

In this paper, we employ I-function of two variables defined by Goyal and
Agrawal [2], to obtain a solution of the partial differential equation,
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related to a problem of vibration in a string.

1. Introduction

The object of this paper is to employ an integral invoiving I-function of two
variables defined by Goyal and Agrawal [2), which is extension of I-function of one
variable by Saxena V. I’. [4], to obtain a solution of a problem of vibration in a string.

We consider the problem of vibration in a string to find the transverse
displacement y(x, t) in a string of length L stretched between the points (0, 0) and
(L, 0), if it is displaced initially into a position y = f{x) and released from rest at this
position with no external forces acting. '

The required function y(x, t) is the solution of the following boundary value
problem

iz-'1=7§2—'l:r D,0<sxsL (1.1
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and the initial conditions,

v, ) = 0; y(L, 1) =0

yx, ) = fix), 0sxsL R 2t (1.1.1)

%y(x,O)c0,0SxSL

Therefore the general solution of the partial differential equation (1.1) is given
by

yix, 1) = E A, sinﬂcosﬂ o (1.2)
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where the [-function of two variables lhtrdduce& by'C.byal a:ndj.\.gralw'al (2] in the
following manner : -
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where "y "y
Iﬂl l'(b, - B,ﬁ) ’l'll l‘(l - n’- + (lia)

@8 = m P (14.1)
Z[ il b[i + Bﬂ&) n r(ﬂ,; a],é)]
‘ J=n4l iyl

"l’ "]
n rd; - §m) M KA -g+ym
w = —p2 il 42
2[ N ra-d;+&m N I - 'r,,n)]
it | j=my+l jung+1
'"‘ n
n ry;-Fg-F° n)n rQ - e + E§ + E5m)
yEm= £— (143)
n r'(l-j,+F,§+F n)n l‘(e-£,§ En)
IELIRR Jrmg 1l

The double integral in (1.1), converges absolutely if

largzy | <%5' largzy | <¥

where
A=Z.E 2",£+}_:,F, iFﬁiﬂl ZB,,@Z(! Za >0, (1.4.4)
1 u|-| 1 nltl 1 u’0l
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ZE —ZE'+ZF--2F',+ZS 28 +Zy, Z‘(’,>() (14.5)

we shall require the modified form of the integral [3, p. 372, Eq. (1)].
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and the following orthogonal property (5, p. 28]);

0 smozn
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J sin == sin )‘"'L dy = (1.6)
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Legendre’s duplication formula,

Jrr(2z) = 22! I‘(z)l‘(z + %) (1.7)
and
p =y, ny; iy, my, Q = piY, gf"; pf?, q?’»:‘r (1.8)
T = [(n’, @ )l.u,]' [(aﬂ, o )-,4—1,;:‘,"]: [‘(CI' Y.’:)-";].'
[(Cﬂ, Y,‘,‘ )l,"‘l:P:”] . (1.9
O (7 W 70 W 1 ) Y O
[(dﬁ, 8; )‘"*m:,,]. _ o (110)
Throughout the paper, we use the notations P, Q T, T' defined as per
equations (1.8) to (1.10) respectively. ln
2. Integral

The following integral has been established in the paper :
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Provided &y, k; > 0

I
Re| w + 2k, min -;‘ + 2k; min
15psm, l" 1sjsm,
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largzll <%’5. |argzz| <%’5¢A, B> 0.

The integral (2.1) can be established easily by making use of the definition of
I-function of two variables (1.4) and the results (1.5), (1.7) respectively.

3. Solution of the Problem

The solution of the problem to be obtained is

ylx, b) = 32; i

[l - 27: usinZl,,n]-‘
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t
X sin A”L'“ si.\k"+’l (3.1)

where all conditions of convergence are same as in (2.1).
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Proof : If 1 = 0, then by virtue of (1.1.1), we have

i n 1
2 (sin-i_-]u
-1 = l"n.l‘
L

[.sin %‘3 ] I =¥ A,sin

2, |sin 2 [ o
2 L

(3.2)

Multiply both sides of (3.2) by sin A /L and integrate with respect to x from
0 to L. Now use the integral (2.1) and orthogonal property of sines (1.6), we thus

obtain the value of constant A, .

Substituting the value of A in (3.1), we get the desired solution.

(i) For my = ny = p = = Oin the results (2.1) and (3.1), the resulting equations

are in the form of product of two I-function of one variable.

(ii) For r = 2, the results in (2.1) and (3.1) reduce to the following results

involving H-function of two variables.
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